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A b s t r a c t .  In a recent paper  the authors introduced an infinite class of global opti- 
mization algorithms based upon random sampling from the feasible region and local 
searches s tar ted  from selected sample points, based upon an acceptance/rejection 
criterion. All of the algorithms of that  class possess strong theoretical properties. 

Here we analyze a member of that  family, which, although being significantly 
simpler to implement and more efficient than the well known Multi-Level Single- 
Linkage algorithm, enjoys the same theoretical properties. It is shown here that ,  
with very high probability, our method is able to discover from which points Multi- 
Level Single-Linkage will decide to start  local search. 

K e y  w o r d s :  Randomized algorithms, Multi Level Single Linkage, Local Searches 

I n t r o d u c t i o n  and basic  de f in i t ions  

In this paper we consider the simply bounded global optimization prob- 
lem: 

f* := g l o b m a x f ( x ) :  x E ~ := [0, 1] d C 1~ d 

where f is a continuous function and d > 0 is an integer. We shall 
assume that  a local optimization algorithm is available which, given 
a starting point, is capable of producing a local optimum, ff x* is a 
local opt imum, the subset of points A(z*) characterized by the prop- 
erty that  the local search, when started from any point in A(x*) will 
lead to the local opt imum x*, is called the region of attraction of x*. 
We shall assume that  f ,  besides continuity, possess all of the smooth- 
ness properties required by the local search employed. The region of 
attraction of the global opt ima is assumed to have non-null Lebesgue 
measure. 

* corresponding author 
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We now briefly recall the basic definitions of both the proposed 
algori thm and of Mult i  Level Single Linkage (in short,  MLSL). 

SIMPLE LINKAGE 

The a lgor i thm proposed in this paper  is a member  of a family, denom- 
inated "Threshold Random Linkage" (or, in short,  TRL),  first intro- 
duced and analyzed in (Locatelli and Schoen, 1995). 

Here we briefly recall the definition and main properties of TRL.  
The  a lgor i thm proceeds by sequentially sampling points in ~ accord- 
ing to the  uniform distr ibution.  Let X 1 , . . . , X i  be a uniform sample 
from [0, 1] d available at s tep i. As soon as Xi is sampled, a decision is 
taken abou t  whether  or not  to s tar t  a local search from tha t  point.  In 
particular,  at  s tep i, a local search is s tar ted from Xi if and only if 

m  (llX¢- Xjll: f ( x A  + E >_ _> (1) 

where a~ is a threshold parameter ,  E is a small positive constant  and It-ll 
denotes  the  Euclidean norm. In words, TRL will s tar t  a local search 
from the last sampled point  if in a prescribed neighborhood there is 
no o ther  sampled point  with bet ter  (or just  slightly worse) functional 
value. 

In (Locatelli and Schoen, 1995) several theoretical properties of this 
algorithm were proven. We summarize here the main results: 

- the global optimum will be observed after a finite number of itera- 
tions with probability one. By this we mean that, given any prefixed 
accuracy level ~ > 0, a sample point with function value not low- 
er than f* - r] wi]] eventually be found. We remark that this is a 
trivial result enjoyed, in particular, by all methods which are based 
upon a sample which a~ssigns positive probability to every set with 
non null Lebesgue measure; 

- when i --+ oo, the probability of starting a local search from Xi is 
asymptotically decreasing to 0 if and only if 

lim a i i  l i d  : 00; 
i--+ co 

- when i --+ oo, if (~i does not tend to 0 "too fast",  then the expected 
number  of local searches s tar ted will be finite even if the algori thm 
is never s topped;  

- for sufficiently great  i, a local search will be s tar ted from Xi if and 
only if 

m  {llX - X ll} >_ (2) 
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In other words, for sufficiently large i, thanks to the continuity of f ,  
the compactness of the feasible set and the presence of the param- 
eter e in (1), we can asymptotically neglect the effect of function 
values when deciding about the start  of a local search. 

We notice in passing that  the introduction of e in (1), while almost 
irrelevant from a computational  point of view, greatly simplifies 
the theoretical analysis. 

A possible choice for a~, inspired from MLSL, is the following: 

oti = ~1 (aF(l + d/2) l°gi) (3) 

where a is a constant  to be chosen by the user. We adopt the convention 
of calling a TRL algorithm with threshold given as in (3) a "Simple 
Linkage" algorithm, or SL. Simple Linkage thus is just a particular 
member of the TRL family introduced and analyzed in the previously 
cited paper. 

The general theoretical results, specialized for SL, imply that ,  pro- 
vided that  a > 0, the probability of starting a local search tends to 
0. Moreover, it was proven in the cited paper that ,  if a > 1 and if 
it is assumed that  no local search is started from within a prescribed 
distance from the boundary of the feasible region, then the algorithm 
will perform a number of local searches whose expectation is finite even 
if the algorithm were never stopped. Although similar results could be 
proven even without assuming that  local searches are never started very 
close to the boundary, here, in order to be able to make significant com- 
parisons with MLSL, we will restrict the analysis to this special case. 

MULTI LEVEL SINGLE LINKAGE 

For what  concerns MLSL, a positive constant a M  and an integer con- 
stant N > 0 are given, and sampling proceeds in batches. The decisions 
about starting or not local searches can be taken only after N points 
have been drawn - -  so that  the decision epochs are N, 2N, . . . .  At 
each decision epoch, say hN, with h _> 1, a threshold is computed 

1 (aMP(1 + d/2) log__hN) a/d 
= hN / (4) 

Given this threshold, the whole sample of hN points is reconsidered 
and a local search is started from Xi, i E {1 . . . .  hN} if and only if 

min { I IX/ -  Xjl l :  f(Xj) + E > f(X~))  > 3hN (5) 
j < h N , j ~ i  - -  - -  
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which again, if hN is sufficiently large, reduces to 

min {]]Xi - Xj[]) > ~hN" (6) 
j<hN,j¢i 

Our definition of MLSL differs from the original one proposed in (Rin- 
nooy Kan and Timmer,  1987a; Rinnooy Kan and Timmer,  1987b) 
because of the presence of e; with slightly stronger hypotheses on f 
and a slightly more involved analysis, we could have proven results 
very similar to those we present in this paper, without the necessity of 
modifying the acceptance/reject ion criterion through the insertion of 
the parameter  e. However we feel tha t  this way the theoretical analysis 
can be made in a simpler and more comprehensible way. 

We Mso recM1 here tha t  in the original definition of MLSL it was 
assumed tha t  no local search is started from within a prescribed dis- 
tance from the  boundary  of ~t. In (Locatelli and Schoen, 1995) we have 
shown how this hypothesis can be dropped. However, for sake of com- 
parison, we will keep the hypothesis here, both for SL and for MLSL. 
We shall also assume that ,  letting D(x, r) denote the d-dimensional 
hypersphere centered at x with radius r, then, at iteration i, all of the 
hyperspheres D(Xj, ai), j = 1 . . . ,  i -  1 are entirely contained in ~.  
This assumption, somewhat  justified by the hypothesis of not letting 
any local search s tar t  from a point which is too near to the boundary, 
might be dropped at the expense of some more tedious computations.  
A similar hypothesis is made for MLSL. Again, the interested reader is 
referred to (Locatelli and Schoen, 1995) where the problem connected 
with the  "boundary  effect" is tackled. 

Let us briefly denote with 

y(i) := min{lix~ " _ xjll : j < k , j  ~ i} 

the random variable corresponding to the minimum distance between 
a sample point Xi and the first k points in the sample. Then a local 
search from Xi is s tar ted in SL if and only if 

Yi (0 > a~ 

while it is s tar ted in MLSL from the same point if and only if 

In summary,  the most evident differences between SL and MLSL 
are: 

- SL samples sequentially (N = 1), while MLSL samples in batches; 
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- in SL a local search might be started only from the current point, 
with no need to re-consider previously sampled points; in MLSL, at 
each decision epoch, the whole sample is reconsidered (with great 
computational overhead in the computation of distances among all 
of the points in the sample) and local searches might be started 
also from points which have been sampled many iterations before. 

1. Theoretical  comparison between MLSL and SL 

In this section a detailed analysis of the relative behaviour of the pro- 
posed algorithm versus MLSL will be carried out. Let us start with 
some terminology and basic notation. 

We plan to compare the behaviour of the proposed algorithm and 
MLSL when the sample is the same. In other words, assuming the same 
sample has been drawn, do both algorithms perform the same decisions 
with respect to when to start a local search? In particular, will they 
both start local searches from the same sampled points? 

Let us assume that  there exists a constant ~ > 1 such that 

a M  ~ .  

O" 

In the applications this is the most common situation: it has been 
proven in fact that  a finite expected number of local searches in MLSL 
is obtained for ar M > 4, while the same holds for SL when ar > 1. It is 
thus sensible, for comparison to choose, for example, ~ = 4. The case 

< 1 might be analyzed by means techniques very similar to those 
employed in this paper. 

Under our assumptions, it is easily seen that a local search will be 
started from X~ in MLSL at decision epoch h if and only if 

y(hi)N > ~l/doLhN. 

Let us denote with Si and Mi the events that, respectively, SL and 
MLSL decide to start a local search from X~. We look for bounds on 

P(& I M~) 

i.e. on the probability that  a local search is started in SL given that, 
sometimes after the i-th iteration also MLSL decides to start a local 
search from the same point, and on 

P(-~Si I -~Mi), 
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which is the  probability that ,  given tha t  MLSL will never start  a local 
search from a given sampled point, even SL will not. 

The main results can be stated as follows: 

T H E O R E M  1. I f  fl > 1 and a > 1, then, for i -+ o0, 

~ - 1 

P(S~ I M~) >~ ~ _-~ ~_ ~ 

and 

T H E O R E M  2. I f  fl > 1, a > 1, ffM > 2, then, for i --~ cx~, 

P(-S~ l~Mi) -~ 1. 

Here the symbol ~> is used to denote "asymptotic minorlzatlon" " ", 
i.e., ak ~> bk if and only if, for every e > 0 S k such tha t  k >_ k implies 
ak ~_ bk -- e. 

We now prove the first result. 
Proof. 

p(y(0 > ~ , 3 h  > h0: y~(~ > ~h~) 

where h0 is the  first possible "decision point" for MLSL: 

Using the result of lemma 3 in the Appendix, after which, if i is 
sufficiently large, then a local search is surely star ted in SL if it is not 
s tar ted "too late" in MLSL, we have: 

P(S~ I Mi) = p(y(O > ai, 3 h _> ho : ]1(OhN > 5hN) 

> P(Yi (0 > ai, 3 h, hoN ~_ hN ~ fli:Y(ON > 5hN) 

- P(3  h > ho: y~(~ > 6~N) 

P(3 h, hog  ~_ hN ~ fli : Y(~ > 5hN) 

P ( 3  h _> ho:  Yh{/N ) > 5hN) 
hi 

P (y(i) 5hoN)+ E P~v(i) \~hoY > - -k 'hg  > ~hN'Y(~ ~-- ~J N ' V j  : ho ~_ j < h) 
h----ho +1 

o o  

ptv (O (~hoN) + E ~,~hoN ~ 
h = h 0 + l  

P(Y~(~ > 5hN, Y(O N ~_ 5jN, V j :  ho ~_ j < h) 
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where hi = max{h : h N  <_ fli} = [~i/N].  
For sake of brevity let us denote by Eh the event 

.rv(i) v(i) 
E h  := t "  hN > 5 h N , "  (h-1)N -~ 5(h-1) N}" 

Now, observing tha t  

p(v(O y(~  ~ hN > 5hN'  ~ 5 jN  , V j : ho <_ j < h) = 

P(Yj(~ < 5 jN,Vj  : ho <_ j < h - 1 I Eh)P(Eh) 

and tha t  the  first factor in the last expression can be bounded as in 
lemma 4 (see the  Appendix),  we have 

P(S~ I M~) > 

'g,-'hl ho P(Eh) p ( y ( i )  
5hoW, ~ + z.... h - i > 

~ ~ hoN 
h=h0+l > 

h 1 o o  

--~'hoN > P(Eh) + E 
h----h0-F1 h=hl +1 

h0 hi 
p { V ( i )  

J[ ] + hi - 1 - -"hoN > - -  E P(Eh) 
h=h0-F1 

P(Eh) 

p r v ( O  5hoN) + k ~ hoN > 

h 1 o o  

hi - 1 
h=ho +1 h=hl +1 

P(Eh) 

From lemma 5 we obtain 

pIy(O > 5hoN) "-' (hoN) -~'~ \ hoN 

for h0 --+ oo, while, from lemma 6, we have 

fla log h 
P(Eh) ," hZ~+I NZ, , . 

Using the bounds and the asymptotic  results of lemma 7 and the 
fact that ,  for i -+ oo, ho ".~ i / N  and hi "~ f l i /N,  we finally obtain 

h0 fla hi log h 
( h ° N ) - ~ F  h i ~ N ~  E h ~ + l  

h----ho+l 

ho /3a hi log h /3a 
( h o N ) - ~  + h l ~  N~------~ E h ~ + l  ÷ N~-----J 

h=ho+l 

o o  

E 
h=hi-F1 

log h 
hZ,+l 
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i - ~  + ~ k ~ (nqN)~. ) 
i-fi<~ + 1 { logi/m logfli/Y ~ 1 logflilN 

~ (i/U)13<)" ~ ]  "-~ ~ (13i/N)l j~" 

1 + ~--ff-~l \(log i -- ~"&'jl°gi~ 

lo___~'~ log/ 1 l o g  i - -  + 

#Z~ _ I 

which concludes the proof. 

We now prove the second main result, which is straightforward. 

Proof. When i --q c~, we have 

P(-~Si [ -~Mi) = p ( y ( i )  < ai [y( i )  < 5hN Vh > ho) 
- -  h N - -  - -  

1 - P(Si U Mi) 
1 - P(Mi) 

> 1 - e ( & )  - P ( M O  1 

- 1 - P(Mi) 

Here we used the fact tha t ,  if a > 0 and if aM > 2 then the proba- 
bility of s tar t ing a local search tend to 0 both for SL and for MLSL. 

The most impor tant  implication of these two theorems is tha t  we can 
substantially simplify MLSL by using SL. In fact the decision of start ing 
a local search with MLSL is a complex one, based upon the considera- 
tion ' of the whole sample and the analysis of chains of points hopefully 
belonging to the region of a t t ract ion of the same local optimum; it has 
thus been shown tha t  with very high probability the analysis of such 
chains, at least asymptoticMly, leads to the same decisions which are 
taken disregarding the chain effect. 

Looking back to the origin of MLSL, we may now ask ourselves 
which was the rationale behind the choice of proceedings in batches of 
N samples. For what  concerns the "chain effect", the choice of N is 
irrelevant; however, due to the fact that  the threshold used in MLSL 
decreases to 0, points which have been assigned to a chain in an early 
stage, might become un-assigned later on. The analysis of the compu- 
tat ional  overhead caused by this situation lead to the introduction of 
batch sampling. We have proven here tha t  SL, in some sense, simu- 
lates the chain effect of MLSL without having the necessity of looking 
back to previously "chained" points. This has the positive effect of let- 
ting us sample sequentially (N = 1) and, most important ,  not revising 
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previously assigned links. This combined effect enables to avoid the 
decision about  sample size, N, which usually has quite a relevant effect 
on computat ional  efficiency. 

Analyses similar to the one presented here can be carried on in order 
to bound the probability tha t  MLSL starts a local search when SL does; 
moreover it is possible also to generalize the results to the case in which 
/3 _< 1. Indeed, from Theorem 1 it is seen that  when ~ ~ 1 the lower 
bound on the probability of starting a local search from a point with 
SL given tha t  MLSL does, tends to 0. As the bound is quite tight, this 
seems to imply that  the similarity between SL and MLSL is achieved 
only for sufficiently large values of/3. This is indeed confirmed by the 
analysis of the case ~ < 1 where it can be shown that  this probability 
tends to 0. 

1.1. C O M P U T A T I O N A L  E X P E R I M E N T S  

A few numerical experiments have been carried out in order to see 
whether the asymptotic results reported in this paper can be actually 
observed in finite time. We thus compared the behaviour of MLSL with 
aM -- 4 and SL with a = 2 by running both algorithms on the well 
known 2-dimensional penalized Shubert function (see, e.g., (Lucidi and 
Piccioni, 1989)): 

2 5 

f(xl,X2) --~ -- l i e  ( jcos(( j  + 1)xi + j ))  
i = l  j----1 

-0 .5((xl  + 1.42513) 5 + (x2 + 0.s003e) 

with Xl, x2 E [-10,  10]. This function has 760 local opt ima and a single 
global opt imum. While not being a particularly difficult test function 
for global optimization methods which can use functional structure 
(like, e.g., bounds on the derivatives), it is quite a challenging one for 
methods exclusively based on sampling and local searches. 

A total of 10 runs of both algorithms were performed, each run being 
based upon uniform samples of 10,000 points; both algorithms were run 
using the same sample. No stopping rule was used, except the termi- 
nation at the 10,000-th iteration. Needless to say, both algorithms did 
actually discover the global opt imum well before the 10,000 iterations 
limit. 

In table I the statistics collected in these experiments are report- 
ed. The column headings in the table have the following meaning: in 
the first two columns we report the total number of local searches per- 
formed by SL and by MLSL; in the third column the total number of 
sampled points from which both SL and MLSL started a local search; in 
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Tab!e !. C_emputat'_'on~ re_~,,At_ ~ 
[[ Run SL [ MLSL both ] P(SIM ) 

1 569 ] 395 331 I 83.80% 
2 576 ] 374 311 83.16% 

f 

301 80.70% 3 580 [ 373 
4 594 I 401 328 81.80% 
5 619 384 327 I 85.16% 
6 641 390 339 I 86.92% 
7 586 375 309 [ 82.40% 
8 647 389 340 87.40% 
9 578 401 328 81.80% 
lO 588 383[ 322 I 8407 0 

P(-S]-.M) 

97.52% 
97.25% 
97.10% 
97.23% 
96.96% 
96.86% 
97.12% 
96.81% 
97.40% 
97.23% 

Average 597.8 386.5 [ 323.6 [ 83.73% 97.15% [] 

Std.dev. 27.89 10.54112.89 [ ]1 

the last two columns we report respectively the computed percentage 
of times SL started a local search given that  MLSL did the same and 
the percentage of times SL did not start  a local search given that  MLSL 
also did not started one. If we recall that,  with the values chosen for the 
parameters in these experiments, we have/3 = 2 and a = 2, from the 
theoretical analysis we deduce that,  asymptotically, the probability of 
starting a local search in SL given that  it was started in MLSL should 
be at least 15/17, or 88.24°/o. The similarity between the asymptotic 
bound and the observed one is striking. As an illustration, in figure 1, 
the points used as starting points for both MLSL and SL in the first 
of the ten experiments are represented. A small square in the negative 
quadrant  corresponds to the global optimum. 

Obviously not very much can be concluded by such a limited exper- 
iment; however it is quite surprising to notice that  the bounds we 
obtained using asymptotic considerations and, perhaps most signifi- 
cantly, disregarding function values, are extremely close to the observed 
ones. This fact surely deserves a deeper analysis. For what concerns 
computationM times, our first implementation of MLSL, using no spe- 
cial data  s tructure for storing distances, was extremely penalizing for 
this algorithm; a revision of our MLSL code lead to a drastic reduction 
in the computat ional  overhead caused by distance computation. On a 
SUN Sparc Station, the ten experiments required 0.79 CPU seconds for 
SL and 1.23 CPU seconds for MLSL. In order to appreciate this differ- 
ence in performance, it can be observed that,  while the ratio of CPU 
times required by SL and MLSL is approximately 64~, the analogous 
one for the total number of local searches is roughly 155%. In other 
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words, SL was roughly twice as fast as MLSL, even if it started a much 
higher number of local searches. From this we deduce that  the overhead 
caused by the necessity of looking back to previously sampled points, 
which is peculiar of MLSL, is quite relevant. In our implementation of 
MLSL the sample was organized as a linked ordered list, with the cur- 
rent value of the nearest neighbor distance associated to each sample 
point. Using this organization, when the k- th  point is sampled, a total 
number of k - 1 distances have to be evaluated; we need in fact to com- 
pute not only the distance between the current point and sample points 
with better function values, but also the distance between the current 
point and worse ones, in order to possibly update the distance infor- 
mation of these ones. Thus, if at stage h, that  is after hN points have 
already been sampled, a batch of N new points is sampled, the total 
number of distances to be computed is O(hN2). If we consider that  SL 
requires the nearest neighbor distance to be computed only from the 
most recently sampled point, in the worst case we observe that  the total 
number of computat ion required is the same as in MLSL. However two 
important  differences make the practical behaviour of SL much better 
than MLSL: first of all, MLSL requires, at each step, exactly O(hN 2) 
distances to be evaluated; SL requires the same order of magnitude 
only in the worst case, which corresponds to the case in which all of 
the most recent N sampled points are "negative records", that  is each 
of them has the lowest functional value up to the time it is sampled. It 
is evident that  this event is very unlikely. Moreover, in order to be able 
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to correctly implement MLSL, the exact  nearest neighbor distance has 
to be stored with each sampled point; in SL, however, as soon as a sam- 
ple point whose distance to the current  one is lower than the current 
threshold is found, we may stop and decide not to s tar t  a local search, 
thus avoiding many useless distance calculations. It should be noticed 
that ,  as the probability of start ing a local search goes to 0, the savings 
in computat ions  due to this shortcut  become more and more sensible. 
Unfor tunate ly  an exact est imate of the average overhead in MLSL an 
SL seems to be very difficult unless unrealistically simple models of 
the objective function are assumed. Moreover different da ta  structures 
might significantly change our est imate of the computat ional  overhead. 
It is a current  research issue to t ry to develop an efficient da ta  structure 
for the implementation of SL. Details will appear elsewhere. 

2. A generalization of Simple Linkage 

The analysis carried out in the preceding section makes it possible 
to conclude that ,  provided tha t  fl > 1, SL will very often s tar t  local 
searches from the points chosen by MLSL. However, as fl approaches 
1, the two algorithms tend to become quite different. In this section we 
introduce a generalized SL algorithm in which the threshold parameter  
a is not constant ,  but becomes 1 in the limit. The purpose of this 
modification is to analyze the relative behaviour of MLSL and SL when 
their  characterist ic parameters  tend to be close each other. 

Let us modify the definition of SL by substituting the threshold 
paramete r  a with a sequence ai such tha t  ai < aM and limi cq = tiM; 
thus, defining/9i : =  aM/ai~ we obtain /3i ~ 1. 

It is immediate  to prove an analogue of theorem 1 for this case, 
the  only modification required being that ,  in lemma 3, it should be 
assumed tha t  fll goes to 1 "not too fast"; in particular, it is necessary 
that ,  at least for sufficiently large values of i, 

N - 1  
/3i2 ~ +  1 

Provided this assumption is made, it is trivial to derive the following 
result: 

P(Si l Mi) > ,,--~-- -~ 4 
f l i  - f l i  

From this it can be observed that ,  when ~i $1 ,  the lower bound on 
the probability of start ing local searches in SL given that  MLSL did the 
same, tends to O. This obviously does not imply that  the probability 
goes to O, even if, being the minorizations in the proofs quite stringent, 
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it is quite likely that  this will be effectively the case. Thus it seems that, 
as ~i $ 1, the decisions taken by SL will be more and more different 
from those of MLSL. It is in this case instructive to look also at bounds 
on the event that  MLSL starts local searches when SL does. A crude 
minorization is obtained as follows: 

P(Yi (i) > ai, 3 h > ho " E(i) (~hN) - -  h N  ~ P(Mi  I Si) 

.~v(O 5hoN) 
- p ( y ( O  > 

(hoN)-~'M 
i-al  

exp ( - - aM( l  -1~//) log i )  

This minorization shows that  the relative behaviour of MLSL and 
SL is influenced by the speed of convergence of/34 to 1. In particular, if 
the speed is sufficiently high, then, with probability 1, MLSL will start 
local searches from all the points used by SL as starting points. On the 
other hand, by slowing down the speed of convergence of/3i, we obtain 
bounds going to 0, thus permitting less and less searches to be started 
from the same points. 

Thus we may conclude observing that, if the parameter of SL is 
strictly lower than that of MLSL, then SL will perform many local 
searches and, in particular, most of the local searches performed by 
MLSL. On the other side, if the threshold parameter of SL is made 
closer and closer to that of SL at a sufficiently high speed, then the 
reverse property holds: MLSL will perform more local searches than 
SL, and, in particular, it will start local searches from all of the points 
from which SL did the same. An intermediate situation occurs when 
the speed of convergence of ai to a M  is slow. 

Conclusions 

In this paper an analysis of the similarities between Multi-Level Single- 
Linkage and a new threshold-accepting method for global optimization 
has been carried out. The most important result of this analysis is that, 
by means of suitable tuning of the characteristic parameters of the two 
methods, their computational behaviour may be made very similar. In 
particular, both the probability that the new algorithm, SL, starts or 
do not start a local search from a sampled point, given that MLSL does 
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the same, asymptotically is very near to 1. Thus SL can be seen as a 
simulator of MLSL which avoids looking back to previously sampled 
point as possible candidates for starting a local search. Worst case 
analysis of the savings caused by this significant difference between SL 
and MLSL does not enable to discriminate between the two approaches. 
However simple considerations on the average behaviour of the two 
methods permit  to conclude that  in practice the overhead in SL will 
be significantly lower than in MLSL. A few computational experiments 
confirm this analysis. 

As a concluding remark, we would like to add that  in this paper we 
have shown how it is possible to obtain theoretical as well as compu- 
tational results very close to those of MLSL with a simpler algorithm, 
SL; obviously our main aim is to find a global optimization algorithm 
which is both theoretically and practically reliable and efficient. Thus 
future research will concentrate on the optimal tuning of the parameter 
of SL; moreover, as SL is jus t  a particular member of a larger family of 
global optimization algorithms, the question naturally arises of identi- 
fying one or a few methods which are in some sense the best ones. This 
is still an open research issue which we hope to be able to address in 
the future. 

A p p e n d i x  

LEMMA 3. Let ho := [i/N]; if/~ > 1, i > Z-~ and 2h integer with 
hoN < hN  <_/~i such that 

y(hi)N 5hN 

then 
Yi (~) > ~i 

Proof. From the assumption made on i it follows that  the index set 

{h : hoN <_ hN <_/~i} 

is non empty. Then it immediately follows that  if there exists an h ~ ho 
such that  

y (0  
hN > 5hN 

that  y (0  is non-increasing in j and exploiting the rela- then, recalling 
tionship between the thresholds of MLSL and SL, we obtain 

1i(0 > 1<(0 
-- hN 
> /~l/dOLhN 
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=1( ) ~aV(1 + d/2) lOghNhN lid 

1 ( log~i~ 1/d 
> ~ /3crF(1 + d / 2 )  Hi ] 

1 (ap( l+d/2)  l°gi)l/d - : - -  

LEMMA 4. If h > ho + 1 then 

ho P ( Y ~  <_ 5iN,V j :  ho <_ j < h -  1 I Eh) > h 1 J 
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P(Yj(~ < 5iN,V j :  h < j < h -  1 I Eh) > P([~ I Eh) 

The last term corresponds to the probability that  a point in the sample 
falls in a prescribed set given that  at least one of the first (h - 1)N 
points falls there. Being the sample i.i.d., given any region with positive 
volume, each point has the same chance of any other of falling in such 
a region. Thus this probability cannot be less than ho/h - 1. 

It can be observed that  the last bound cannot be improved upon. In 
fact, direct computat ion of the required probabilities enables to show 
that  P(~71Eh) ..~ ho/h. 
LEMMA 5. 

p ( y ( o  > ~ k-e  

f o r  k -+ 

so tha t  

where ~v(i) y(O 
Eh : :  t* hN > 5hg, (h-1)N ~ 5(h-l) N} 

Proof. The event Eh corresponds to the event that  no point, among 
the first hN sampled ones, is placed in D(Xi, 5hN), while at least one 
out  of the first (h - 1)N points falls in D(Xi, 5(h-1)N) \ D ( X i ,  5hN). Let 
us denote b y / )  the event: 

{ 3 j  < h0:  Xj E D(Xi, 5(h_I)N) \ D(Xi, ShN)} 

Then, recalling that  both ]~!i ) and 5(.) are non increasing, we have 

~ y( i )  < 5(h_l) N h0 N -- 

y(O <_ 5jN V j : h o < _ j < h - 1  
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Proof. Let us denote with #(-) the Lebesgue measure. Then, for any 

so that 
p(y(O > 5k) ~ k -z~ 

when k --+ oe. 

LEMMA 6. 

P (Yh(i)N > (~hN, ~/)(h)l)N __~ (~(h-1)N) e,o 
3a log h 

Proof. Given two integers r, s with s > r, we have: 

~ j  _< r , j ¢  i :  IIX~ -Xj l l  < •) 

: e (as < .¢o <_ ¢ D(X,,as)). 

Using stochastic independence and the asymptotic expression (7), 
we obtain that the last quantity is equal to 

(p(y(i) <_ 5 r ) - P ( V r  (i) < 5s)) (1-#(D(Xi ,  Ss))) s - r+ l~  

(exp ( - f l a r ~  --~) -exp( - f la logs ) )exp( - ( s - r+l ) f l c r l -o~)  

Letting now r = ( h -  1)N and s = hN, and observing that, for 
h -+ co, 

. ,~  loghN 
exp - (N  + upa - ~  ] ~1  

we obtain 

{V(i) " __ ~ ( h - 1 ) N )  e,~ 

. . . .  log hN~ 
exp - f l a ( h - , ) l v  ~-~ ; ( - e x p ( - f l a l o g h N ) ) =  

r > O ,  wehave 

p ( y ~ O  > r) = P( I IX j  - Xdl > r vy _< k,j ~ i) 
= (1 - ~ ( D ( X .  r ) ) )  k-~ 

exp (-k# ( D( Xi, r) ) ) (7) 

under the assumption that r ~ 0. Recalling the choice of the threshold 
value of MLSL, we have immediately 

# (D(Xi, 5~)) = fla l°g k 
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exp(-flo'(h-1)l°ghN) (1- 
lo[ h 

LEMMA 7. I f  r > 1 then, for i --+ oo, 
O o  

~--~ log___k_k l o g /  

k=i kr ( r -  1)i r - l "  

Proof. The general term in the summation is, at least for i suffi- 
ciently great, decreasing. Thus we can use the following inequalities: 

f~oo oo iogk f/OOlog x log____~_x dx < ~ k---- C- < dx. 
i+l xr  -- -- xr 

k=i + l 

Integrating by parts we readily obtain the following bound: 

log( /+  1) 1 X--"~ log k log i 1 
( r - 1 ) ( i + 1 )  r-1~l ( r - 1 ) = i  ~-1 <- 7 -  k ~ -< ( r - 1 ) F  - ]  + ( r - 1 ) 2 i  ~-1 

k=i+l 

from which the thesis follows. 
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